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ABSTRACT

An analysis of the steady and unsteady aerodynamics of sharp-edged

slender wings has been performed. The results show that slender wing

theory can be modified to give the potential flow static and dynamic

characteristics in incompressible flow. A semiempirical approximation

is developed for the vortex-induced loads, and it is shown that the

analytic approximation for sharp-edged slender wings gives good

prediction of experimentally determined steady and unsteady aero-

dynamics at M = 0 and M = 1. The predictions are good not only

for delta wings but also for so-called arrow and diamond wings. The

results indicate that the effects of delta planform lifting surfaces can

be included in a simple manner when determining elastic launch vehicle

dynamic characteristics.
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Section 1

INT RODUC TION

It was clear very early in the space shuttle development that the vehicle design

could be critically dependent upon aeroelastic loads (Refs. 1 and 2). NASA Marshall

Space Flight Center (MSFC) needed, therefore, to develop analytic methods in time

to be applicable to the final space shuttle design. The main problem was that the

methods would to a great extent be configuration dependent, and the configuration was

changing continually. However, once the large crossrange capability had been decided

upon, one design feature has remained fixed. That is, the orbiter will have a delta

wing planform of some sort. NASA MSFC concluded, therefore, that analytic or other

means would be needed for prediction of unsteady delta wing aerodynamics regardless

of future configuration changes.

Based on experience, NASA MSFC asked Lockheed Missiles & Space Company, Inc.

(LMSC), to investigate the unsteady aerodynamics of the delta planform space shuttle

and try to develop analytic means simple enough to allow inclusion of large delta plan-

form lifting surfaces in the computation of the aeroelastic characteristics of the space

shuttle ascent configuration. In order to survive the reentry heating environment, the

space shuttle wing will be thick and have large leading edge radius. Before the un-

steady aerodynamics of leading edge vortices from the space shuttle wing can be

determined, a thorough understanding of sharp-edged delta wing aerodynamics is needed.

The present report describes the analysis of sharp-edged delta wings, the results of

which are used as a much needed interim step in the development of space shuttle delta

wing aerodynamics (Ref. 3).

1-1
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Section 2

DISCUSSION

The simple flow concept developed by Polhamus, i.e., the "turned-around"

leading edge suction, has been remarkably successful in predicting the nonlinear lift

generated by the leading edge vortex on slender wings at high angles of attack (Ref. 4).

This is true not only for simple delta wings, but also for so-called double-deltas, and

the method also predicts experimentally observed Mach number effects (Ref. 5). As

the vortex lift is in reality dependent upon upstream flow conditions, and the leading

edge suction depends only upon local conditions, the flow concept cannot be applied to

the unsteady aerodynamics. However, it is a very useful tool for determination of the

static loads and is used as a starting point in the present analysis.

2.1 Static Characteristics

Polhamus' expression for the delta wing lift is as follows (Ref. 4).

CL = CL, P + CL,V

L, P = Kp sin a cos 2 a (1)

. 2
CL, = K sin a cos a

K and K are constants determining the magnitudes of attached flow and vortex liftp v
components, respectively. In incompressible flow Kp is almost linearly dependent upon

2-1
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aspect ratio (see Fig. 1). The deviation between Jones' slender wing theory (Ref. 6)

and Polhamus' results are represented as follows in what is called "Present First

Approximation" in Fig. 1.

It is assumed that the area denoted ATE in Fig. 2 carries no load in order to

account in a crude manner for the delta wing trailing edge condition at M = 0. The

result is that the slender wing lift (and normal force) will be reduced by the factor
2

cos 0 LE That is

CNa = 2 sin a cos a cos 2 LE 7r(c tan 0LE)2/S

(2)

= 27r sin a cos a sin2 LE/(b/2 c )

For a delta wing b/2 co 
= A/4 = tan 0 LE and K in Eq. (1) becomes

K = 7r(A/2)/ 1+(A/4)2]

which is the "First Approximation" shown in Fig. 1. At M _ 1. 0, it is assumed that

the area ATE is fully effective, giving K = 7r A/2, i. e., in agreement with Jones

theory (Ref. 6).

The strip load normal to the leading edge of the slender wing (half) in Fig. 2,

giving the total C of Eq. (2), is

1/2 (d CNa/d )j = 7r sin 2 a sin2 LE/(b/2 Co) (3)

.2
With CL,P = CNa cos a from Eq. (3) and CL, V = r cos a sin a from

Eq. (1), one obtains the following for the total lift.

2-2
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A; 2co3 [ / 2 2tan

L/ 2 7r cos cos a cos 0 tan 01
4C aLE tan OLE

1 tan a 
(4)

2 tan 0 LE

That tan a/ tan LE = a/OLE should be a pertinent scaling parameter is to be

expected from slender cone and slender wing analyses. However, CL/ (A)2 is not

a good scaling parameter, probably because of the term cos 2 0LE = (1 -1

Based upon Peckham's results (Ref. 7), Eq. (4) was modified and available experimental

data for thin, sharp-edged delta wings (Refs. 7 through 12) were plotted in form of

CL/(b/2c = f(a/0LE) (5)

The results shown in Fig. 3 indicate that Eq. (5) indeed collapses the experimental

data to one (preliminary design) curve. The deviations are most likely data scatter,

as no consistent 0LE-trend is discernible. Eq. (5) and Fig. 3 will be used later in

the discussion of steady and unsteady aerodynamic loads.

2-3
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The conical flow assumption inherent in all existing theories does not seem to be

substantiated by experimental results (Ref. 13), at least not for thin, sharp-edged

delta wings (see Fig. 4). Only close to the apex does the pressure distribution agree

reasonably well with the best available theory (Ref. 14). Farther aft the pressure

level drops from the (constant) conical flow value although the spanwise distribution

remains very similar in shape. The deviation is mainly due to secondary and tertiary

flow separations (Fig. 5) that have much more prominent effects in a low Reynolds

number wind tunnel test than in actual high Reynolds number flight conditions, as is

pointed out by Hummel* (Ref. 13). In the flight case the boundary layer over the

center wing will not be laminar but turbulent, and the secondary separation and its

effects will be much smaller.

The fall-off from the conical flow level of the aft delta wing pressures (Fig. 4)

indicates that far downstream from the apex the feeding sheet from the leading edge is

changing, and the vortex strength farther aft is no longer growing linearly with .

The measured load distributions on a sharp-edged A = 1.147 delta wing at a = 100, 200,

and 300 (Ref. 16) are shown in Fig. 6. Also shown is the attached flow slender wing load

distribution defined by Eq. (3). The measured load distribution is fairly well approxi-

mated by using a bilinear approximation to the nonlinear vortex-lift distribution, with

the break occurring at f = 0.4.

The trailing-edge-round-off would be obtained, it appears, if the attached load

distribution were represented by a more accurate potential flow lift distribution

(Refs. 17 and 18), shown as a short-dash line in Fig. 6. Further comparison in this

respect is made in Fig. 7, showing that limiting the attached flow lift growth in Eq. (2)

to CNA /CN = 1.5 gives better agreement with the distribution given by vortex-

lattice'methods (Refs. 17 and 18). It is obvious that the aspect ratio should not be

*The existence of this secondary flow separation was shown first by Ornberg (Ref. 15).

2-4
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much larger than A = 2 when applying the present modified slender wing distribution.

Applying this "ceiling" to the lift growth decreases CNa by 9 percent. This is the

"Present Second Approximation" for K shown in Fig. 1 which is in better agreement

with Polhamus' potential flow value. With this modification, Eq. (3) becomes*:

1/2 (dC /d r sin2 a in 0 LE x : - 0.7 (6)
Na /d (b/2co) 0.7 : 4 > 0.7

Integration gives

CNa = 0.91 7r sin 2 a sin2 0 LE/(b/2c )

Cma = -(co/) CNa( a- CG)

(7)
4a = 0.64 (1 - A 4aTE)

A (aTE = r a sin 2 0 LE (7a = 4/3 7r: elliptic loAding)

For trailing edge sweep (0TE / 0 in Fig. 2), Eq. (7) is modified as follows

CNa = 1.4 7r a (0.35 + 0.3) sin2 a sin 2  LE/(b/2co)

Cma = -(Co/E) CNa (a - CG )

-1
(b/2c ) = (cot 0 LE - tan 0 TE 1 (8)

(8)
* * *

= a (1 - A 4aTE) (0.49 4a/3 + 0.51/2)/(0.35 a + 0.3)

: TE LE
* tan 0 TE - tan 0 LE

a = cot 0LE -tan 9TE : 0TE < - LE

*Still with the strip normal to the leading edge, as defined in Fig. 2.

2-5
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There is, of course, every reason to believe that the vortex-induced load distri-

bution should have a trailing-edge-round-off effect similar to that for the attached flow

loads. As a matter of fact, flow visualization results show the vortices to bend away

into the freestream (some 10%) before the trailing edge (see Fig. 8 and Refs. 19 and 20).

As pressure measurements of burst indicate that the wing loads will be affected up-

stream of the visually determined burst location (Ref. 21), the vortex-induced loads

will be affected even farther upstream of the trailing edge. To be consistent, the

vortex-induced loads are assumed to have the same type of "triangular round-off" as

the attached flow loads. The vortex load distribution is determined using delta wing

results in which ATE is used in arriving at the final distribution. As the vortex loads

are generated close to the leading edge, they will not be sensitive to the change of

trailing edge geometry near the centerline. The delta wing results can, therefore,

be used to determine the vortex-induced lift distribution also for a swept trailing edge

by considering the effective chordwise planform extent at the vortex location, approxi-

mately 75% local span (iV = 0. 75). Thus, the vortex-induced lift distribution is

approximated as shown in the following sketch and Eq. (9)*.

c = constant = constant

Equivalent
Delta Wing

'VTE

TE LE 7

*Also with the strip normal to the leading edge, as shown in Fig. 2.

2-6
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1.72 Tr sin2 : s 0.4

dC
21 dC = 0.685wsin2 a : 0.4<<O0.86 *V

4.92 I - / sin2a: 0.86 < < (V

V = cot 0 LE( 1 - V ) tan TEj/(cot LE tan 0TE )

The integrated total vortex load for a delta wing = 1 ) is that given by

by Polhamus, Eq. (1), with KV = 7r(Refs. 4 and 5). The capability of Polhamus' leading

edge suction analogy to predict the measured vortex-induced lift has been demonstrated

very convincingly (Refs. 4 and 5). Eq. (9) only redistributes the lift to fit the experimen-

tally observed lift distribution. After integration, Eq. (9) gives the following loads:

CNV = 1.37r (0.93 eV-0.2) sin2 a

mV = _ _oCNV \V - 6CG)

c

2 0.16)
V = (1-AVTE )0.435 093 - 0.2) (10)

2AVTE V sin 0 LE (QV = 0.75)

2. 1. 1 Comparison with Experiments. Extensive experiments have been per-

formed on thin, sharp-edged slender wings with 740 leading edge sweep, in which

the trailing edge was swept forwvard and aft from the delta wing position (Ref. 22).

Fig. 9. shows that the present approximation does not worsen the good CL-prediction

2-7
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already obtained through Polhaums' theory (Fig. 9a) and that it provides a marked

improvement of the C -prediction (Fig. 9b). It is worth noting that the present
m

predictions are good regardless of trailing edge sweep, in sharp contrast to the

predictions through the leading-edge-suction analogy with its attached-flow-like

longitudinal distribution of the vortex-induced loads (Refs. 4, 5, 18, and 19). The

experiments reported in Ref. 22 covered the Mach number range 0. 2 < M S 0. 8. The

M = 0.2 results shown in Fig. 9 can, of course, be compared with the present

M = 0 predictions. The M = 0. 8 data could be compared with predictions made for

M > 1 by direct application of Jones' theory (Ref. 6). As only those parts of the

wing having increasing cross sectional area will produce lift, only the delta plan-

form is efficient, and sweeping the trailing edge forward or back is detrimental to

the same degree. The attached flow results are

r sin 2 a/(cot 8LE - tan 0TE)  T E < 0

CNa

r sin 2 a tan2  LE (cot 6 LE - tan TE )  : TE > 0

(11)

C = -c/)C a (2/3)cot OLE/(cot LE- ta TE - CG TE

-ma (o/)CNa [(2/3)- CG TE > 0

The vortex-induced loads increase (by 9% for 6LE = 160) as the tail-round-off

is not present at M = 1.0, consistent with the attached flow loads defined by Eq. (11).

The moment increases more than the lift as A (TE = 0. One obtains the following

definition of vortex-induced characteristics at M a 1:

2-8
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CNV = 1.37 7r - 0.2) sin2 a

C oo-
CmV c- C NV (v - 6CG)

V = (*2 _ o. )2 - 0.2) (12)

cot 0LE - (1 - V) tan 0 TE
cot 0 LE - tan 0 TE

Figure 10 shows that the M = 1 predictions compare fairly well with the M = 0. 8

experimental results (Ref. 22), but not quite as well as the earlier M = 0 predictions

compared with the M = 0.2 data (Fig. 9). The reason may well be that M = 0.8 is

still subsonic and should have trailing-edge-round-off effects. This is consistent

with the overprediction of the lift for the delta wing at M = 0.8 and the good predictions

for the diamond wing with its small ATE. Note that the effect of Mach number is

large. The pitching moment of the delta wing is increased in magnitude by 75% when

the Mach number is increased from M = 0.2 to M = 0.8 and the corresponding value

for the arrowhead wing is close to 400%.

The experimental data were obtained using a sting-mounted model, and one has

to be somewhat concerned about sting interference, especially in regard to the effects

of trailing edge sweep. It appears, however, that the sting used in the test (Ref. 22)

was small enough that sting interference should be negligible (Ref. 23). This is at

least true for the static results just discussed. In the case of dynamic tests, sting

interference is much more difficult to avoid (Ref. 24).

The main difference between the present analysis and available theories is the

assumption that the vortex lift distribution deviates substantially from the attached

flow load distribution. This has an especially large effect on the C (CL)-
characteristics and these will now be examined in more detail.

2-9
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From Eqs. (8) and (10) is obtained:

Cm/CN =(co/c) I 4CG a + ( a -V)(CNV/CNa1 + CNV/CNa)I

C /CNa = 0. 49 (0. 93 0. 2) tan /a (0.35 + 0.3) (13)

2
sin 0 LE (cot 0 LE - tan 0TE)

For very slender delta wings, where 0 TE = 0 and cos 0 LE - 1, CNV/CNa becomes

CNV/CNa = 0.55 tan oa/tan 0LE 0. 55 (a/8LE) (14)

When the vortex lift first starts to affect the stability,CNV /CNa is small (compared
to unity) and Eq. (13) can be approximated as follows:

S[CG a + a -V (0.55 E (15)

That is, the vortex lift decreases the pitch stability at a rate that increases

linearly with angle of attack. This effect has been observed in a series of dynamic

tests, the results of which are discussed in detail later.

2-10

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D352320

With Cm/C L = (Cm/CN)/cos a, Eq. (13) gives predictions that compare well

with experimental data (Refs. 7, 16, and 22) (see Fig. 11). The present approxima-

tion is a decided improvement over the results obtained by strict application of the

leading-edge-suction analogy (Refs. 4 and 18). Even for the somewhat large aspect

ratio A = 2. 3 (see Fig. 7), the predictions agree rather well with experimental

trends (Ref. 25) (see Fig. 12). The main disagreement is caused by vortex break-

down for CL >0. 6 (a>14 0 ). The vortex burst moves fast forward of midchord (Refs.

25 and 26), giving the increasing stability trend of the experimental data, in contrast

to the predicted decreasing stability.

For very slender delta wings, such as the 75. 30 swept wing on the Handley Page

HP 115 (Ref. 27), the aerodynamic center shows a definite forward movement at

higher angles of attack (see Fig. 13). Eq. (15) gives

da - 0.55a - /0LE (16)

For 0LE = 150, Eqs (7) and (10) give a = 0.62 and = 0.58, i.e.,

da/da = -0. 183. This prediction is in very good agreement with the a trend for

high angles of attack, where the effects of the fuselage have reached their saturation

point (Fig. 13).

2-11
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2.1.2 Sideslip Effects

At an angle of sideslip .8 (See Fig. 14 for definitions) the effective apex angle of

the windward leading edge is increased by

-1
AOLE = tan (tan . /cos c)

The "false" half wing loading is increased by the factor

[tan ( 0 LE+ AOLE)/tan 0LE]

and the "true" half wing by the factor

tan (0LE AOLE)/tan OLE

Thus, Eq. (6) takes the following form for small sideslip angles (/8).

/d 7T sin 2 a sin 2 6 : s 0. 7CNa LE 1 + tan f x * *18
( (b/2c 0  tan 8LE cos 00 0.7 : 0.7 <  <  (18)

The corresponding "running" rolling moment loading is (See Fig. 14)

1 dCea =1 (dCNa) a sin 0LE cos 0LE
2 d d j 2 (b/2c) (19)

Integration gives

1 *2 0.49 4a 0.51
a a .7a 3 2 LE

(20)

cos 0 LE (cot 0 LE- tan 0 TE sin c cos a 1+ tan 0

Combining Eqs. (8) and (20) gives the following 3 -derivative at 8 = 0.

7Ca a CNa cos 0LE (cot 0 LE - tan 0TE )  (21)
£)a = - A aTE 2 cos a (21)

2-12
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In regard to the vortex-induced loads, the sideslip effects can be derived using the

now well-established fact that the vortex lift is independent of aspect ratio* (Ref. 4 and

5). Thus, from Eq. (10) and definitions

* 2
CN = 1.37 7r (0. 93 V - 02) sin a

2 (22)
N bc CN c

(pU 2/2) NV 2 cot 0 LE- tan TE

Lambourne (Ref. 28) has shown that the sideslip effect on vortex burst is well

represented by including a in the effective sweep for the wing leading edge. Similarly,

/3 can be included in the effective apex angle. 0 LE in Eq. (22) can be substituted by

Oeff. LE + tan- 1  (tan,/cos a )

,and Eq. (22) gives

NV 1 1.37 c 2  0.93fV - 0.2) sin 2± NV 1 (
2 (PU 2 /2) 2 1 tan 0LE (tang3/cos a) - tanOTE]

tan OLE + tan / cos (23)

The 8- derivative of Eq. (23) for 8 = 0 is

2 * 2
1 NV 1 1.377r co  (0. 93  - 0.2) sin

S- (24)
2 3[ U / 2 = 2 cos a (1 - tan 0TE tan 0LE 2 cos 2 0 LE

*Which means physically that the vortex loads depend only on leading edge conditions
and are insensitive to conditions at the inner wing surface (near the wing centerline).
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When referred to the reference area bco/2 (of the real wing with 0 LE instead

of Oeff as its apex angle), Eq. (24) gives

1 dCNV CNV 2
2 NV cot 2 OLE/(cot 0 LE - tan TE) cos20LE cos a (25)

2 2

Elle (Ref. 20) and others have shown that the spanwise location of the vortex is

insensitive to aspect ratio as long as the wing is not very narrow or half model testing

is not used (see Fig. 15). In the latter case the splitter plate boundary layer growth

restricts the inwards vortex motion (e.g., the 760 swept wing in Fig. 15b). When

U/0LE becomes very large (high sweep or high angle of attack) asymmetric vortex

shedding starts occurring (Ref. 29).

Before this mutual vortex interference occurs, the vortex will move inboard on
the windward (sideslipping) wing to a new position yV , which is simply

YV = : co (V tanOeff - tan /cos a) (26)

Thus, the lever arm in roll for the strip-load at moderate sideslip (P < 100) is

YV

b 2( b/2c0  17V tan OLE - 1- I /cos o (27)

As 7V usually is a constant independent of ( (Refs. 7, 13, and 20), the rolling
moment from one wing (half) is

1 1 V
2 C - CNV b (28)

where TV/b is given by Eq. (27) with V The P- derivative of
Eq. (2 8) at /= 0 is -
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1 (dC V) I dCNV) V V tan 0 LE
2 df 3 = 2 d 0 d =0 2 b/2co)

1 C V (29)
2 NV 2 (b/2c0 ) Cos c

(C) v  for small ,8 becomes, by use of Eqs. (25) through (29)

(C NV V cot LE [1 + tan20

ca osa 2 LE LEc s)V cos a 2

1-i (30)
V (1- tan 0 TE tan 0LE (30)

77V - T

For extremely narrow wings, i.e., 0 LE is very small, the second term in the

bracket is zero, and -(C£f)V is maximum. If V-0.5, the rolling derivative would

become zero for a delta wing. This never really happens because asymmetric vortex

shedding or other anomalies, such as vortex burst, occur long before this condition is

reached.

In Fig. 16 the sideslip derivatives measured on 740 sharp-edged swept wings

(Ref. 22) are compared with the predictions obtained from Eqs. (21) and (30) together

with Eqs. (8) and (10). As before for the longitudinal characteristics (Figs. 9 and 10),

the M = 0 predictions compare much better with the M = 0.2 test data than the

M = 1.0 estimates do with the M = 0.8 experimental results. The reason is probably

the same; i.e., at M = 0.8 there still are subsonic effects which are not accounted for

in the M = 1. 0 predictions, as is indicated by the consistently good prediction for

ETE = 370 , where the subsonic trailing edge effects are small. Again, the present

approximation consistently provides a better prediction than the pure application of the

leading-edge-suction analogy (Refs. 4 and 22).
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The dependence of C,, on CL = CN cos a and 0LE , together with the

CL (/OLE ) - correlation shown earlier (Fig. 3), strongly suggests that it should be

possible to develop a scaling law similar to Eq. (5) for Cyg . From Eqs. (21) and

(30) the relationships for a delta wing ( eTE = 0) can be written as follows:

(C)a aaS- cos OLE/cos a
CNa/tan 0eLE 1 -_ aTE

TE

Cy, )VV V V (31)_ - -
C NV/tan 0LE 2 cos a ~V

That is, one would expect that for slender wings (OLE small) at moderate angles
of attack the following would hold:

C 1 0

S= CONSTANT (32)
C /L4

From earlier discussion (Eq. (5) and Fig. 3), one has

3/2

CL/() f( / LE)

Thus, the sideslip derivative C1, should scale as follows:

CA/ (0 /2 = (33)
C- = f /OLE)

Figure 17 indicates that Eq. (33) is valid for the aspect-ratio-range 0. 7 s A s 2. 3,

and that present predictions agree well with experimental data (Refs. 22, 30, and 31).

The "fall-off" at high a/8LE is caused by (cos a )-effects (see CL (a/OLE) -
correlation, Eq. (4)). For 6 LE = 7.10 the data point for a /6LE = 1.5 in Fig. 17 is

"in line" as cos a = 1, whereas the data point for 6 LE = 300 falls off already at

a /6LE = 1. 0 because cos a = 0.866.
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This completes the discussion of static characteristics of sharp-edged delta wings.

As long as subsonic leading edge conditions exist, i.e., the bow shock is detached, the

above analysis is applicable. How the Mach number effects for M > 1 can be accounted

for has been described by Polhamus (Ref. 5).

2.2 Unsteady Aerodynamic Characteristics

The nonlinear aerodynamic characteristics of slender delta wings will be analyzed

using the method of local linearization, e.g., by considering small perturbations from

a mean static angle of attack a o (see Fig. 18). The total unsteady aerodynamic de-

rivatives are then obtained by superposition of attached and separated flow components.

2.2.1 Attached Flow. The attached flow unsteady aerodynamics for M > 1 are

obtained in the present analysis by a straightforward application of first-order momen-

tum theory. It is assumed that the perturbation induces negligible changes in the axial

velocity from the freestream value Um cos ao . The normal force per unit length of

the vehicle is then the reaction to the substantial rate of change of momentum of the

virtual mass per unit length (Refs. 32 and 33). With the coordinate system of Fig. 18

the normal force can be expressed as follows for a slender delta wing performing

bending oscillations. In the "locally linearized case" in Fig. 18 the effective gust

velocity component is Wg cos ao

dN _ d (dJ\ 8 8\ dJ (34)
dX dt dX o at) dx

The momentum per unit length is

dJ =dZ
dX = P A(X)W = P A(X) dZ + W cos ao

SA (X) Z + + W cos (35)
' P A(x) cos Soat " 0"
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Thus

dN- - cost +- P A(X)dX aSX at cc
(36)

U cosC a + + W cos a
co a & t0)]

With the gust stationary in space, dWg/dt = 0 and Eq. (36) can be written

as follows: (Ref. 34)

dN ( a2z azd
dX - U cos to+  p A(X) UC cos a X +

(37)

- U cosa - + p A(X) W cos aSo X jtg o

For a short time interval, during which pW and U. remain constant, Eq. (37)

can be written in coefficient form as follows:

SdC N1 N + 1 Z
2 dX 4 U cos 010 t X

cos a o

(38)

+ 1 az) 9 + 1 2
U. cos c t - X U cos 0 at S U

The equation of motion for single-degree-of-freedom bending oscillations

can be written in the following form using standard notations:

m (t) + 2 (t) + q(t) = P(t) (39)
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where

m = generalized mass

4 = structural damping (as a fraction of critical damping)

= natural free-free bending frequency

q = normalized coordinate (dots denoting time derivatives in the usual way)

P(t) = generalized force.

The generalized force P(t) is given by the virtual work cone by the aerodynamic

forces on the vehicle*

P(t) = 0 (x) dx (40)

There are three different types of generalized force

P(t) = P a(t) + Ps(t) + Pb(t) (41)

Pa(t) = generalized force component due to attached flow

Ps(t) = generalized force component due to separated flow

Pb(t) = generalized force component independent of vehicle motion,
e. g., due to buffeting or buzz.

The attached flow component, Pa(t), is given by Eqs. (37) or (38) and (40).

For single-degree-of-freedom bending oscillations, one has (see Fig. 18)

Z = - (x) q(t) and a/D X = - a/Zx

*If W is the work done, P = DW/3q. As the vehicle is slender, axial force changes
are assumed to be negligible compared with normal force changes.
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Thus

XA

Pa(t)/(P U2/2 S cos2 f dN (x)dx
ao 2 ,- ((x) df d

COS a
0o XTE

S- 2A(x) (x) '(x) q(t) - 4(x) U cosSU COS a

XTE

(42)

XA

+f 2A (x) 2(x q(t) - (x) 2 qt dx

XTE Uce2 o

XA

- 2A'(x) (x) -x dx
C

XTE

For a slender pointed wing (or body)

A(xA) = 0, A(xTE) = 7rb2 4 , A(x) = 7r (x)J2

and Eq. (42) becomes

P (t) U 2 2 Scos2 ao = 4TE x2TE q)- xTE U (tsa

XA XA

2 12[ ] L2 2 q(t) 47 (43)

+ y (x) ' (x g (t) - (x) 2 2 dx -S JU cos a

xTE W(XCo x0 TE

y(x) (x) U dx
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Eq. (43) can conveniently be expressed as follows, with time measured

from time of gust entry (Refs. 34 and 35)

Pa(t) = P U 2 2 S Ka q((t) + I c (t) + G (t)

XA

Ka = cos 2 a b2 (xTE) TE) + 4 y(x) (x) 2 dxa 2S s % E) (44)

D a  
cos a x

" 2 S o [xTE) (44)

XA

1 f - y (x) 2 0(x) 2 dx

xTE

XA W U t - xAx dx
Ga(t) - cos a o y(x) (x) U

XTE

Ka, Da, and Ia are coefficients determining the aerodynamic spring,

damping, and inertia, respectively. Ga(t) represents the gust penetration load

in coefficient form.

For the special case of rigid body oscillations around xCG, the deflection

8(x, t) in Fig. 18 takes the following form:

8(x,t) = @(x) q(t) = x-xCG 0 (t)
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or with x = x A - c o  , where xA - xTE = c

W(x) =- ( - 4CG)

(45)

'(x)= 1/c 0

q(t) = c 0 (t)

Eq. (44) can then be written as follows for rigid body oscillations in uniform

flow (W = 0):

C cO(t) c 2 ""

Pa(t) = a a U a U 0(t)

k 7r b 2  2 a 0 [ T~1edl
ka 2S cos a[1 - CG + fd7

(46)

d -7rb2 co2S a )2

ob2 2
a  2S /2G)2

1

With c o as the reference length, the coefficients ka, da , and i a in

Eq. (46) are simply Cm 0 , Cm0., and Cm. . With T as the reference length,

one obtains*

*One may have to go back to Eq. (46) in some cases, e.g., if different reference
lengths are used for the reduced frequency and the pitching moment, as 6 varies
according to individual taste. For delta wings, both E = 2c /3 and E = c /2 are
used (Refs. 22 and 36, respectively). o
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C 2
C =- -C CNao o CG

CN'o = 2- (b/2)2 S 7r A/2

ea 1+ d 2 for delta wings

1

a=+ f [-]2 d[ =2- for3deltawings)

CN is the standard slender body derivative, and Cm'. is usually negligible.
0  0

When M < 1, the subsonic ATE-effect shown in Fig. 2 is approximated by

an equivalent wing with straight trailing edge and the above attached flow formulas

are applied to this "equivalent" shortened wing. The effective span of this

equivalent subsonic wing is determined by equating the normal force determined

by Eq. (2) for the original wing and by slender body theory for the equivalent wing.

Eqs. (7) and (47) give the following relationships for a delta wing:

dC

CNOa d= = 1.82wr cos 2 ao sin2  LE/(b/2 0)

(48)
b2 2 b .2

CN0  C cos a = 2Tr cos a 2 /(bco/2)
Oa Nao 0
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That is

b ceff -2 1/2beff c eff = 0.955 cos 0LE 2 - cos a (49)b LEo

and Eq. (47) takes the following form for a delta wing at M = 0

(with Cm a = 0).

Cm0 a CNa eff. o 3 co CG

N2 12

C a2 eff. c o CG] (50)

CNa effC

Fig. 19 shows that Eq. (50) predicts the measured dynamic derivatives (Refs. 36

through 38) at a = 0, M = 0, with satisfactory accuracy. At higher aspect ratios,

A > 2, the deviations probably become unacceptable and a more sophisticated theory

has to be used (see Ref. 39).
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2.2.2 Separated Flow. The transient leading edge separation characteristics on

sharp-edged delta wings have been investigated extensively by the British. Most

noteworthy are the contributions made by Lambourne and his colleagues (Refs. 40

through 42) using a combined experimental-analytical approach. The results obtained

in a water tunnel for a plunging delta wing established a very simple picture of the

unsteady leading edge separation and the formation of the leading edge vortex (see

Fig. 20). The steady-state vortex position is established after a time increment

ht = co /U,. That is the vortex is convected downstream from apex with free-

stream speed. In the time interval before the steady-state position is reached, the

transient vortex is parallel to the leading edge, as the local shedding takes place at

the same rate along the leading edge. It is, of course, not surprising to find that the

unsteady vortex position, like the steady (Ref. 20 and Fig. 15), is dependent only

upon a/o LE (see Fig. 21). The vortex apparently reaches its steady state height

position somewhat before t = co /U,, when the steady-state spanwise position is

reached. This faster vertical movement is best illustrated by the vortex paths in

the crossflow-plane (Fig. 22).

A stepwise increase of a from a nonzero value presents a picture consistent

with the convection downstream of the new vortex system (Fig. 23). When the angle

of attack is decreased, the pattern becomes somewhat more complicated (Fig. 24).

Initially, there is an appreciable delay before the vortex height is changed, but there

is no such delay in the inboard vortex movement (Fig. 24a). The flow visualization

results show that attachment at the leading edge does not occur instantly when a is

reduced, but the separation persists for some time, probably because of the induced

velocity associated with the continuing downstream presence of the "old vortex system,"

as is suggested by the authors (Ref. 41). Owing to the continuous weakening (diffusion)

of the vortex, it cannot be traced for late times, e. g., for At/(co/U.) > 0.6. When

the angle of attack is decreased to a nonzero value, the initial behavior is qualitatively

the same as for a decreas to a = 0, but there seems to be little spanwise movement

of the vortex (Fig. 24b). An initial outboard movement is followed by an inboard

movement back to the initial position. That is, it is mainly the vortex height that is

changed.
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The transient lift distributions shown in Fig. 25 are suggested by the authors, based

upon their flow visualization results. The effect of secondary separation is omitted
for sake of clarity. When the angle of attack is increased, the vortex loading in-
creases initially with its aerodynamic center near the leading edge before the inboard
vortex movement catches up and the steady state distribution is approached (see
Fig. 25a). The flow visualization results clearly indicate that when the angle of attack
is decreased the same transient flow changes do not simply occur in the reverse direc-
tion (compare Figs. 25a and 25b). That is, the pressure change (due to vortex-
induced loads) at any given position on the upper wing is not necessarily reversible
with respect to increasing and decreasing incidence. This irreversibility may play a
part in the observed differences in the effects of positive and negative sharp-edged
gusts (Ref. 43). Another noteworthy difference between increasing and decreasing
angles of attack is the difference in aerodynamic center. During the transient con-
dition after an a - increase, the aerodynamic center (AC) will be ahead of its static
position. By contrast, the transitory AC for an a -decrease is aft of its steady-state
position.

This difference between "downstroke" and "upstroke" vortex position has been
observed on a delta wing oscillating in heave (Ref. 19 and Fig. 26). Only close to
the apex is there a symmetric displacement from the steady-state position. Farther
aft, the vortex never gets down to the steady-state position. This amplitude modula-
tion is the likely result of "flow memory, " consistent with the irreversibility between
increasing and decreasing a -effects observed by Lambourne et al. (Ref. 41 and
Fig. 25). When plotted directly against the reduced frequency, based upon distance
from apex, without consideration to vortex location on the wing, the phase lag does
not seem to agree with the findings by Lambourne et al. (see Fig. 27a). The low and
high reduced frequency data (actually high and low freestream speed data*) fall on
both sides of Randall's theory (Ref. 44). However, when plotted against reduced
frequency, the various chordwise positions seem to have a cyclic lag variation which
approaches the Lambourne-value at low reduced frequencies. The saturation of phase
lag for high frequencies is very similar to that observed for the two-dimensional
Karman-Sears vortex wake effect (see Refs. 45 through 48, and Fig. 28). Thus, one
would expect the "Lambourne-lag, " or constant-timelag concept, to be valid only for
low reduced frequencies.
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In their most recent investigation of unsteady leading edge vortices Lambourne

et al. studied the effect of oscillatory bending deformation of the forward half of a

sharp-edged delta wing by measuring the pressure fluctuations over the rigid aft half

(Ref. 42 and Fig. 29). Distributed roughness was used over the forward 14 percent

chord to ensure turbulent flow over the whole upper inner surface. In the thorough

"calibration" of the test setup it was discovered that the pressure transducer housing,

protruding slightly from the bottom surface, could cause a severe disturbance of the

leeside vortex flow if placed near the leading edge (see Fig. 30). The result is similar

to that obtained on delta wings by placement of miniscule flow fences or, rather, vortex

generators on the underside of the leading edge, when the large continuous leading edge

vortex is broken down into smaller ones. If one examines the oil flow pattern in Fig.

30b closely, one finds evidence of a new reattachment line close to the leading edge,

starting at :1, thus indicating that a new vortex has started at station a1, at the

same time as the "old one" starts "bending-off" towards the freestream direction. The

practical consequence for Lambourne et al. was that they had to remove the outer

transducer at station E 1, when making measurements at 2. The practical con-

sequence for the space shuttle designer could be much more far reaching.

The steady-state spanwise pressure distributions at maximum upward and down-

ward deflections are compared with the undeflected wing data in Fig. 31. As expected

the windward side pressures are unaffected by the wing deformation. On the leeward

side the inboard pressure change caused by the deformation is explained by regular

attached flow camber effects and is roughly predicted by lifting surface theory. The

outboard vortex-induced loads are affected by the deformation in a manner that is

somewhat more intricate. The spanwise position of the sucticin peak is affected by

the wing deformation in a manner consistent with the higher "average" a /0 LE for

the forward delta wing in the case of upward deflection, causing an inboard movement

of the vortex (and conversely an outboard movement for the downward deflection).

*For a sharp leading edge the associated differences in Reynolds number would only
affect the secondary separation and have little influence on the position of theprimary
vortex.
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Less obvious are the reasons for the changes of the suction peak magnitude in

Fig. 31a. Lambourne et al. suggests that the vortex movement up and away from

the surface dominates over the effect of increased vortex strength for the bent-up

wing, causing a loss in aft wing suction peak magntiude. An alternative or possibly

complementary explanation is provided by the present analysis, i. e., the shedding

sheet from the leading edge weakens earlier for the upward deflection. The reason

is that t /o LE decreases along the chord, thus decelerating the vortex shedding

process, whereas the opposite is true for the downward deflection. Thus, the break-

down of the vortex growth rate is reacting to longitudinal camber in the same was as

Lambourne et al. have shown vortex burst to be affected (Ref. 49 and Fig. 32). A

similar /8 LE -effect is obtained by changing 6 LE along the chord. Thus, a

Gothic wing corresponds to the positive camber (bent down apex) and one can expect

similar vortex-growth trends. This is confirmed by experimental data that is dis-

cussed in detail later in conjunction with unsteady lateral characteristics.

For the low Reynolds number (Fig. 31b), the vortex does not start at the apex

for the bent down case. The angle of attack at apex is then only 0.50, and the vortex

starts downstream of 10% chord according to visual observations, whereas at the

higher Reynolds number it is believed to start upstream of 10% chord. Fig. 31

shows that second separation has significant effects on the pressure distribution

also for a turbulent center-wing boundary layer. * The effects are, however, much

less than in the case of laminar flow (compare Fig. 31 with Figs. 4 and 5).

*It is, of course, also possible that the apex roughness was not entirely successful
in establishing turbulent flow over the entire upper surface.

2-28

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D352320

Referring to Figs. 18 and 29, the bending deformation can be written

-6(x, t) = P(x) q(t)

q (t) = Az cos ot (51)

The quasi-steady deflection is obtained with 0 = )t, where the phase angle @

varies from 0 to 2 -r . Fig. 33 shows the effect of this quasi-steady deflection on the

spanwise lift distribution. Apparently, the vortex load is not only moving in spanwise

direction but is also undergoing some spanwise redistribution (or deformation). The

first harmonic would be very important for a structural deformation such as wing bend-

ing (more or less parallel to the leading edge). Even the higher harmonics have some

potential in this respect. This force-couple-type of harmonic can indeed make the

higher wing deformation modes (with nodal lines parallel, almost, with the leading

edge) critical from the standpoint of wing buffet (Refs. 50 and 51), as is also pointed

out by Lambourne et al. (Ref. 42). In comparing Figs. 31 and 33, one notes that the

spanwise pressure distribution for the basic harmonic (n = 0) has the same mean

peak value as the static pressure distribution, but the width of the peak is greater than

the static suctian peak. This growth in width is, of course, related to the spanwise

movement of the suction peak with apex deflection (Fig. 31).

In the oscillatory case the distributions are very similar to those shown in Fig. 33

for the quasi-steady deformation. The spanwise variation of phase lag is displayed by

plotting amplitude and associated phase angle, as is done in Fig. 34. The data points

for the first three harmonic components cluster about straight lines passing through the

origin, indicating that the pressure variations across the span are in phase with one

another. This tendency is strongest for the first harmonic. The slope of the line

through the origin is a measure of the mean value of the phase angle. The phase

angles seem to increase proportionately to the order of the harmonic. That is,

KA = K1n, where K1 = constant.

By comparing Figs. 34a and 34b, one finds, in addition, that the phase angle is

proportional to k , which has also been observed on a delta wing describing plunging
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oscillations (Ref. 52) and is, of course, in agreement with expectations based on the

earlier work by Lambourne et al. (Refs. 40 and 41). That is, the phase lag is de-

termined by a constant timelag A t.

A0 = n coAt

At = K2 co  /U, (52)

The results in Fig. 35 give K2 = 1. 00 ± 0. 01, in excellent agreement with

the earlier sudden-plunge results (Refs. 40 and 41). That the time lag would be the

same for a plunging and a bending wing, i. e., independent of the chordwise (a/eLE )
-distribution, was demonstrated by Lambourne et al. in the following elegant manner

(Ref. 42). The strength F () of the vortex at any position f can be regarded as

the integral result of the vorticity shed from all positions upstream of 6 . For

conical flow d F/dx is constant, * and.for small perturbations can be assumed to vary

linearly with the change of local angle of attack. That is

A - = klA a (53)

The perturbation of the vortex strength at any station downstream of the deformation

is then given by the chordwise integral taken over the deforming part. That is,

rg)= (,) -(,a) d = k ( )dE (54)M= (,,') -r(D,o) =dfD d

In the case of static deformation 0(f) =  and Eq. (51) gives

F(() = - k 1t (55)

*According to the discussion earlier in connection with Figs. 4 through 6 this is
strictly valid only for the region close to apex, ~: 0.4.
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That is, the vortex-strength-perturbation is proportional to the deflection

at the apex independent of the shape of the deformation. In the unsteady case the

local, effective perturbation angle is

S(+) = O/ + c /U. ad/at (56)

The vortex strength at a point convecting with the flow is determined by 9 (c).

dF() k () (57)

At station 61, at time t 1 , the vortex strength would be the sum of the vorticity shed

from each position upstream of e1 at the earlier time t 1 - c o (61 - )/U . For

a certain deflection B (0,t - c o  1 /Uc ) equal to the deflection (0) = fo in the

static case, the equivalent deformation shape in the unsteady case will deviate from

the static deformation shape (see Fig. 35a). However, because the final vortex

strength F ( ) is independent of the deformation shape, i.e., it is insensitive to the

manner (df/d ) in which the vorticity was added upstream of (1 to reach the final

value, the vortex strength at (1 in the unsteady case is simply

r( l,tl) = - k 1o0, t 1 - c o ~1/U) (58)

or with = r° cos Wt

1(g,t) =- klo cos (Wt1 -( 1) (59)

Thus, the vortex strength locally at C1 and 52 are dependent upon the apex deflec-

tion in the manner observed for the fluctuating pressures in the experiment. Lambourne

et al. conclude that although the pressure variations are very dependent upon the height-

and span-wise movements of the vortex, these movements are probably themselves

dependent upon the changes in vortex strength, and Eq. (59) would apply also for the
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pressure variations. Thus, the pressure variations are in the unsteady case simply

determined by phase lagging the quasi-steady pressure variations.. That is, the

pressure amplitude is not modulated by the frequency.

This constant-time-lag, constant-amplitude solution is exactly what the present

authors have used as the low frequency approximation of the Karman-Sears vortex-

wake effects in two-dimensional airfoil flow (Refs. 47 and 48).

In regard to the cautionary remarks by Lambourne et al. that their derivation

considers only convection of disturbances that are upstream of the observation point,

(and neglects pressure changes due to disturbances downstream of the observation

point), the following observation can be made. The local vortex strength will deter-

mine the local pressures as long as the reduced frequency is low because then the

"neighborhood" vortex-strength-deviations from this local value, upstream and

downstream from the observation point, are negligibly small. That is, the derived

results for the pressure variation are valid only for low frequencies. When the fre-

quency is high, this "lumped-timelag" approximation is no longer good. For

instance, in the case of the plunging data discussed earlier (Ref. 19 anl Fig. 27)
Z = 3.4 means that half the wavelength of the vortex perturbation is equal to the

chordwise extent (Co) of the delta wing. In this case the "neighborhood-deviation"

of the vortex strength is no longer negligible, and the constant timelag approximation

is not applicable. In the case of Karman-Sears two-dimensional vortex-wake effects

a constant-phase-lag/frequency -modulated -amplitude approximation could be found

for high reduced frequencies (Refs. 47 and 48). The plunging data discussed earlier

(Ref. 19 and Fig. 27) indicate that a similar phase-lag-saturation effect exists for

the unsteady leading edge vortex shedding. One can also expect that the amplitude

will be affected by the frequency, as is discussed later.

The sketches in Fig. 35 illustrate why plunging and bending oscillations have
the same timelag. A series of quasi-steady rigid wings make up the forward vortex-

shedding body in the case of plunging oscillations, but the equivalent deformation

concept still holds, as long as the vortex follows the local wing flow, which is already
implied in the conic-flow-assumption. For the same reason, the effect of the for-

ward wing deformation on downstream vortex-induced pressures will be the same
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regardless of whether or not the aft wing is rigid or is also describing some sort of

unsteady deformation.* That is, the present authors believe the results obtained by

Lambourne et al. to have a wider application than they have assumed. Mathematically

the vortex-induced load component has the same form as the force induced by a flow

separation spike (the spike tip corresponding to the apex, Refs. 33 through 35). For

a slender delta wing the generalized force Ps (t) in separated flow can be written as

follows for one-degree-of-freedom bending oscillations (modifying Eq. 5 of Ref. 35;

see Fig. 18 for definitions).

P (t)/(p U /2 S = d/dx (di CNs /dz) (x) (xA) q (t - At) - (x) q (t) dx

XTE

(60)

+ d/dx dAi CNs /dz) (xA - x) (x) W (X - x)/U dx
XTE

It is assumed that the gust-induced flow inclination is small enough to satisfy the

small perturbation assumption. The derivative dA' CNs /dz is obtained from static

characteristics, observing that for a rigid wing

- z (XA)- z(x) = (xA x) tana = (xA - x)

That is,

d (d' zN s _ d (AiC ( x
dx dz dx da (XA ) (61)

*The : 5 0.4 restriction for the conic flow assumption imposes the same error
in both cases.
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For low reduced frequencies, CO < 1, which are of practical interest for the

transonic and supersonic speed regimes of the space shuttle ascent, q(t - A t) can be

approximated by a Taylor-expansion

q(t- At) = q(t)- Atq(t) + 1/2 (At)2 q(t) . . (62)

With time t = 0 at time of gust entry (Refs. 34 and 35), Eqs. (60) through (64) give

P (t) = (P. U2/2) S Ks q(t) + Ds (t)/U + I co (t ) / U 2  G s

x

Ds  -(U/fi) f fd (AiCN)/dxJI(V 0(x)dx (63)

Ks = -(1/2)(U /) dx (A C-N ()/dxA - x) (x) (xA - x)/cdx

x s

TETE

Dst = -/)dAl a /dx) /d ) ((x)) (XA-X)x s

j 0( (Ut / I xA ])/u dx)

W Wg t- Uo/8 xA - x /U dx

Combining Eqs. (45) and (63) gives the following separation-induced generalized

force on a rigid wing, describing oscillations in pitch around its center of gravity

(in uniform flow, Wg = 0).
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2
P (t) = (P U /2 ) S c ks 9(t) + d o + i o(t

So Us U

k = _ N a (a - (

i= fd f (AC N)a CG (64)

s  CG U d s

CG 2 d(A iCNa
s 2 U d CG ) dg

With c o as the reference length, the coefficients ks , ds, and is in Eq. (64) are

simply the contributions from the leading edge separation to the stability derivatives

Cm , Cm , and Cm**, respectively. With Z (4 c o ) as the reference length

(for both moment and reduced frequency), the C m- derivatives are

c

s s

2
Cm CG A C Nas d CG)

C 3 CG 2 f 1 d A CN aC G) (65)
= 2 d (- CG) ad
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Notice that the separation-induced timelagged component has opposite effects

on static and dynamic stability, similar to that observed for separated flow effects

on launch vehicles (Refs. 33 through 35). Ai CNas = d CNV/da and Zs =  V
are obtained from Eq. (10) for M = 0 and from Eq. (11) for Mal. Eq. (65) then

gives (neglecting C .. )

c
C U= - Cm4 c CG C m9  (66)

s a

Where Cm. s=Cm V from Eq. (10), and U,/U = 1 (Ref. 42)

2.2.3 Comparison with Experimental Data

The predictions obtained by use of Eqs. (50) and (66) are compared with experi-

mental data (Refs. 36 and 37) in Fig. 36. Obviously, all the vortex-induced loads

are not dependent only upon flow conditions at the apex, as is assumed in Eq. (66).

The character of the deviations suggests that a substantial part of the vortex-induced

load has mathematically attached flow character. It has been shown by Rainbird

(Refs. 53 through 55) that free body vortices on a sharp cone not only generate

suction peaks underneath them (Fig. 37a), but the vortices also entrain freestream

air, causing higher surface flow shear on the leeward side than is measured

at a = 0 (Fig. 37b). Thus, instead of decreasing the "body steering effects", as

for instance flare-induced separation does on a launch vehicle (Refs. 33 through 35),
the leading edge separation increases the effective apparent mass. Assuming that

a fraction E of the vortex-induced loading is caused by this increase of the attached

flow-type loading, Eq. (66) is modified as follows:
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C =C +C
m m m

0 6
s s1  s 2

C C +C
m4 m4 m

s s1 s2

c

C =-= C (- C )

c

C (1 - ) C - CG) (67)
me c TaNV V CG

s 2  
V

Cm4  - C N C f
Cm. -- CG - m

s2 s2

where a for M = 0 is obtained from Eq. (7), ceff/co from Eq. (49), CN and V

from Eq. (10). V

Fig. 38 shows that if half the vortex-induced lift is caused by increased leeside

"body-steering" effects, Eq. (67), together with Eq. (50), can indeed predict the

measured dynamic derivatives. However, such a large change of "body steering"

effects seems unreasonable.

In the plunging test performed by Lambourne et al. (Ref. 41), it was observed

that the leading edge vortex reached its steady-state height position before it reached

'the steady-state spanwise position (see Fig. 21). Thus, it is suggested by the vortex-

height data that a value of U./U = 0.75 should be used when computing the pitch

damping. In the case of the vortex-induced rolling moment, U,/U = 1. 00 is, of course,

the representative value. The fact that the pressure oscillations for the deforming

wing (Ref. 42) gave U,/I = 1. 00 does not contradict the above conclusion. As the
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pressure measurements gave meaningful phase lag results only in the region of the

vortex-induced suction peak (over the center region of the wing the harmonic response

amplitudes were insignificant), where the pressure changes registered by a fixed

pressure transducer will be very sensitive to the spanwise vortex movement, * the

pressure data should give UC /U = 1. 00. Finally, the fact that U > U0 is com-

pletely in accord with measured velocities in the vortex core (Ref. 56). Fig. 39 shows

that theoretical predictions based upon the more realistic assumption 6 = 0.30,

U0 /U = 0. 75 agree at least as well with experimental data as the earlier prediction

based upon £= 0.50, Uc/U = 1.00 (compare Figs. 38 and 39).** These values

for £ and IU/U , determined by semi-empirical means from rigid body dynamic data,

can be used in an elastic vehicle analysis to determine the aero-elastic stability of the

space shuttle lift-off configuration including the effects of delta wing leading edge
separation.

Experimental results for the sharp-edged A = 1.484 delta wing (Ref. 57)

seem to indicate that the constant-timelag, constant-amplitude assumption used to
obtain the theoretical predictions shown in Figs. 38 and 39 would have limited applica-

tion (see Fig. 40). One can see how nonlinear amplitude effects will couple with fre-

quency effects when both perturbation amplitude and frequencies are high, but the
small amplitude, A0 = 10 , used to obtain the data shown in Fig. 40 should preclude

any such frequency effects. A rough assessment can be made in the following manner.

The local perturbation magnitude is

Co
I- != + ICG U 0

That is, That is, 1=AO 1 + 2 C /2

[ 1 -2( )2

(68)
*As has been pointed out by Hummel (Ref. 51).

**The corresponding reduction of the destabilizing CLV -trend in Figs. 10 and 11
will improve rather than worsen the agreement with experimental results.
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It was discussed earlier how the deforming wing results (Ref. 42 and Fig. 31)

could be explained by the effect of longitudinal camber on the vortex growth rate.

One can get an estimate of the pitch-rate-induced camber-effect by integrating

Eq. (68) to obtain

-2] 3 2

(1= o~ 1d= A9 [+ @ - 3f CG- 3~cG

I o I = o(0) = A ,G 1 + CG (

1 (69)

If one assumes that the differences in actual deflection shape has an insignificant

effect, which is consistent with Lambourne's results discussed earlier, one can use

the experimental data in Fig. 31 to define the pitch-rate-induced camber-effect on

the vortex induced loads.

NV C 1 A C

C -(- _ 1 L1 (70)
CN (_CPnax (-C)max &oo

where &o is given by Eq. (69).
0

The frequency effect on the vortex-induced contributions to the stability

derivatives is

acm m* N
1 ams Cm 1 CN

k_1 = (71)
w CmG N CNa V

S S
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Combining Eqs. (69) through(71) gives

a(-Cp 2
k_ 1 max 5

( CG (2)

-Cp)max O 3

Fig. 31 gives

1 &(Cpmax = 6.4

(CP)max a

and kE becomes

2
CG

For (/\0 ) = 1 and j< 0.5, k <S 0.019 CG2" That is, k < 1% for :CG <

75%. Thus, the effect is completely negligible and cannot explain the results in Fig. 40.

If one compares Fig. 40 with the corresponding results for an A = 0.654 delta wing

(Ref. 36), one finds that the frequency effects are very inconsistent (see Fig. 41). If

one also notices that the frequency effect over the range 0 s5 0.5 is no larger than the

Reynolds number effect at any one frequency, one starts to suspect that the frequency

effect is tied to some other flow phenomenon, not to the leading edge separation. Rey-

nolds number cannot affect the leading edge separation on sharp-edged delta wings. It

will, however, affect the secondary separation. If one assumes that the frequency-

effects in Fig. 40 are tied to the secondary flow separation, the results make more

sense. * It was observed at the tests (Ref. 37) that there was a "kink" in the secondary

separation line on the A = 1.484 delta wing. As the secondary flow separation can have

appreciable effects on the vortex-induced loads (see Figs. 4 and 5, for example), it

would seem reasonable to assume that the large effects of Reynolds number and freq-

uency on the stability data in Fig. 40 are both connected to the secondary flow separa-

tion. ** That is, the results in Fig. 40 have no bearing on the validity of Eqs. (66) and (67),

*This is also consistent with the observed large effects of spanwise tripwires on the
frequency dependence (Ref. 37).

**The opposite effect of increasing frequency on static and dynamic stability is com-
pletely in agreement with the usual effects of convective timelag and accelerated flow
on "regular" separation (Refs. 33 and 58).
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as these equations only concern the effects of the (primary) leading edge separation.

For the high Reynolds numbers and roughened surfaces of interest in regard to the

space shuttle flight characteristics, the secondary separation is very unlikely to

cause any such anomalous results as those displayed in Fig. 40.

The vortex-burst-effects measured in Ref. 57 are of more practical interest

(see Fig. 42). At a first glance, the data in Fig. 42 seem to indicate that vortex

burst will not cause any of the devastating effects that the present authors have

postulated (Refs. 25 and 59). However, the data are difficult to interpret and make

sense only after a rather thorough study. Hummel (Refs. 30, 31, and 60) has

shown that the vortex burst is the three-dimensional equivalent to two-dimensional

airfoil stall, causing a loss of lift and a statically destablizing pitching moment

(see Fig. 43). The CL-loss is rather gradual, but the moment changes in a dis-

continuous fashion. If one were to take Cm -slopes over a 20 interval at every

50 mean angle (ao), corresponding to the 10 amplitude C9n -data in Fig. 42, one

could easily miss the main effect of vortex burst, i.e., the discontinous change

of aerodynamic characteristics. The situation is very similar to that for "sudden-

separation" effects on blunt cylinder-flare bodies at transonic speeds (see Refs. 61

through 64 and Fig. 44). The 10 amplitude oscillations do not reveal any dramatic

effects of the sudden separation (Fig. 44b) in spite of the large moment discontinuity

(fig. 44a). The reason is very simple. The 10 amplitude oscillations never "caught"

the Cm-discontinuity. Even when trying to oscillate across the discontinuity, the

large "kick" in the aerodynamic spring often prevents (regular) oscillations to be

performed unless the amplitude is comparatively large (several degrees in case of

the C m  ( a)-data shown in Fig. 44a). When one performs large amplitude oscilla-

tions, e. g., around ao = 0 (Fig. 44c), the stability data look reassuring until the

amplitude is large enough to catch, the Cm-discontinuity. Then a large increase of

aerodynamic stiffness, and an even larger decrease of aerodynamic damping result.

In the case shown in Fig. 44c, pitch oscillations will damp down to A9 = 0 for hinitial

< ad, but for A9 >ad the oscillations will diverge (or converge for large Aginitial)
to a limit-cycle- amplitude of 100 or more. Fig. 44 illustrates that one has to

be very cautious when using experimental methods that are intended primarily
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for linear, or at least continuous, aerodynamic characteristics to investigate highly

nonlinear aerodynamic phenomena. Comparing Figs. 43 and 44, one can see that

vortex burst will not cause the loss of damping experienced by the reentry body at

large amplitudes. Instead, the result will be a loss of aerodynamic stiffness which

can cause violent pitch-up (Ref. 65). The effect on lateral characteristics can be

even more disconerting as is discussed later.

Returning to Fig. 42, one finds that the burst-induced reduction of the statically

stabilizing Cm (a) -slope (see Fig. 43) seems to be registered only by the experi-

mental data for 6CG = 0.5 (not for 6CG = 0.75), with the Cme-data showing

the corresponding (expected) damping increase. The reason for the lack of similar

changes for CG = 0. 75 is probably that the vortex burst does not move up from

the downstream "wake" to the delta wing surface in a smooth, continuous manner.

Instead, the vortex burst more or less jumps past the 75% chord (see Refs. 66 and

67, and Fig. 45). Thus vortex burst jumps all the way forward past CG for

CG = 0. 75 and causes therefore statically stabilizing and dynamically undamping

effects, opposite to what was observed for 6CG = 0.50.

Tobak et al. (Ref. 68) have investigated the effects of free body vortices on

the aerodynamics of slender bodies in coning motion. It was expected that the

vortex-pair would be skewed from the symmetry plane owing to the motion -induced

side wash, but it was somewhat of a surprise to find this"tilt-angle" to remain

constant along the body length. (Later measurements showed this to be true also

for stations downstream of the rotation-center, where the local induced sidewash

changes sign.) It was found that the "tilt-angle" was simply the effective side

wash angle at apex, induced by the coning motion. From static measurements in

pitch, the vortex-induced contribution to the pitching moment was obtained by

subtracting the theoretical predictions for attached flow. Taking the projected

side moment component of this pitching moment due to the tilting of the vortex

pair gave a fairly good estimate of the measured side moment. Similar results

have been found for pointed cones (Ref. 69) although a good part of the observed

side moment characteristics can in that case be generated by nonlinear inviscid flow

effects (Ref. 70). These results make more sense now when viewed against the

delta wing results obtained by Lambourne et al. (Refs. 40 through 42).
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2.2.4 Lateral Stability Characteristics, When presenting the data shown in

Fig. 46, Bisgood (Ref. 71) suggested that the difference between the two sets of

flight results could mean that the effect on Cp of the rate of change of sideslip

(4) was not negligible, as one usually assumes. It will be shown here that

vortex-induced effects give Bisgood good reasons for this speculation. Peckham

in his extensive experiments (Ref. 7) investigated the effects of Gothic (and ogee)

planform-variations from the basic sharp-edged delta wing. Fig. 47 shows how

the vortex-induced lift causes an aft AC-movement on a Gothic wing in sharp contrast

to the forward AC-movement observed on the delta wing. This implies, of course,

that the center of pressure of the vortex-induced lift is aft of the attached flow loading

for the Gothic wing. Following our earlier reasoning in regard to how the vortex-

growth rate depends on a /0LE = f ( ), one can anticipate that the Gothic

wing will have its vortex-induced loads growing much farther downstream than the

delta wing. This would result in a more aft AC of the vortex lift and also in a

larger '7V; i.e., the vortex with its suction peak will be closer to the leading

edge, as has been shown by Werle, for instance (see Ref. 79 and Fig. 48).

Applying these static planform-results to the sideslipping wing, assuming, as

Lambourne has been doing for the delta wing (Ref. 42) and we have for elastic launch

vehicles (Ref. 73), that the unsteady loading is made up of the static load-components

from one or more of a series of suitably deformed configurations, * the results

sketched in Fig. 49 are obtained. It is obvious that the vortex-induced lift will cause

a "right-wing-down" C£ contribution acting against the "right-wing-up" stabilizing roll-

derivative (-C, ) (see Fig. 14 for definitions).

On a rolling wing at nonzero angle of attack, ao >0, or high roll rate, or both,

a similar favorable increasing(a/0LE )-trend along the length of the leading edge is

generated, as the roll-rate-induced contribution to aN (and a ) is proportional to

e . Thus, one can expect the vortex-induced loads to continue growing downstream

of e = 0.4, resulting in increasing vortex induced loads toward the trailing edge,

as had been measured by Harvey (see Ref. 74 and Fig. 50). The spanwise pressure

distributions in Fig. 50 are noticeable also in another respect. There are no signs

*This equivalence for quasi-steady deformation does not always hold. See Ref. 46,
for example. It should hold here, however, for sharp-edged delta wings.
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of a secondary separation. The centrifugal "thinning" effect on the boundary layer

may be one reason; but the tightly connected vortex close to the surface, due to the

(a/9LE)- variation, is probably also a contributing factor.

When angle of attack is increased from a = 0 to values where a vortex

exists already for zero roll rate, the roll damping is initially increasing linearly

with a , as the vortex strength is proportional to a° (See Ref. 75 and Fig. 51.)

However, as ao  is increased above a critical value (ao = 60 in Fig. 51),

the feeding sheet starts "loosening up" and vortex suction is lost over the aft wing,

resulting in decreased roll-rate effects (decreased roll damping). When a o > 120,

the roll damping goes below the a = 0 value. Similar trends are exhibited by

the results in Ref. 76 (see Fig. 52). The deviation from the tighter wrapping vortex-

sheet predictions for the conic flow assumption (Ref. 4) are very similar to those

seen earlier for the Cm(CL) - characteristics (see Fig. 10).

That vortex burst may be of concern for lateral characteristics is shown in

Fig. 53 for the BAC 221 Aircraft.
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Figure 1. Attached Flow Lift Factor K of Delta Wings at M = 0
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Figure 2. Definition of Slender Wing Geometry for Strip Load Computation
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Figure 3. Universal Scaling of Delta Wing Lift
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Figure 4. Pressure Distribution on an A=1 Sharp-Edged Delta Wing

at c = 20.5 0 and M = 0
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Figure 5. Effect of Secondary and Tertiary Flow Separation on
Spanwise Pressure Distribution on an A = 1 Delta Wing

at a = 20.50 and M =0
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Figure 6. Lift Distribution Components on an A = 1. 147 Delta Wing
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Figure 7. Attached Flow Load Distribution
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Figure 8. Leading Edge Vortex Trajectories on an A = 1
Sharp-Edged Delta Wing (Ref. 19)
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Figure 9. Low Speed Aerodynamic Characteristics of Sharp-Edged
Wings with 740 Leading Edge Sweep (Sheet 1 of 2)
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Figure 9. Low Speed Aerodynamic Characteristics of Sharp-Edged
Wings with 740 Leading Edge Sweep (Sheet 2 of 2)
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Figure 10. High Speed Aerodynamic Characteristics of Sharp-Edged

Wings with 740 Leading Edge Sweep (Sheet 1 of 2)
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Figure 10. High Speed Aerodynamic Characteristics of Sharp- Edged
Wings with 740 Leading Edge Sweep (Sheet 2 of 2)
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Figure 11. Variation of Cm with C L for Sharp-Edged Slender

Delta Wings (Sheet 1 of 2)
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Figure 14. Definition of 6-D Parameters (arrows indicate positive
directions of moments, forces, and angles)
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Figure 15. Leading Edge Vortex Position on Sharp- Edged Delta Wings
(Ref. 20)
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Figure 16. Roll-Sideslip-Derivatives of Sharp-Edged Wings with 740
Leading Edge Sweep (Sheet 1 of 2)
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Figure 16. Roll-Sideslip-Derivatives of Sharp-Edged Wings with 740
Leading Edge Sweep (Sheet 2 of 2)
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Figure 17. Universal Scaling of Roll-Sideslip Derivatives of Sharp-Edged
Delta Wings at Low Speeds
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Figure 19. Attached Flow Dynamic Stability Derivatives at a = 0 and M = 0
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Figure 22. Vortex Paths in Crossflow Plane for 800 Leading Edge Sweep
(Ref. 41)
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Figure 25. Suggested Transient Spanwise Lift Distributions (Ref. 41)
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Figure 26. Cyclic Variation of Vortex Height on a Sharp-Edged A = 1
Delta Wing (Ref. 19) (Sheet 1 of 2)
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Figure 26. Cyclic Variation of Vortex Height on a Sharp-Edged A = 1
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Figure 27. Effect of Frequency on Cyclic Vortex Height Variation (Ref. 19)
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Figure 28. Karman- Sears Vortex-Wake Lag
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Figure 29. Oscillatory Bending Deformation (Ref. 42)
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a. CLEAN WING

Figure 30. Oil Flow Patterns on Undeformed Wing at c = 50 (Ref. 42)
(Sheet 1 of 2)
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b. PRESSURE TRANSDUCER AT 1 - 0.583, r7- 0.90

Figure 30. Oil Flow Patterns on Undeformed Wing at a = 50 (Ref. 42)
(Sheet 2 of 2)
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Figure 31. Spanwise Pressure Distribution for Steady Deformation
(Ref. 42) (Sheet 1 of 2)
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b. LOCAL INCIDENCE DECREASING WITH DISTANCE FROM APEX

Figure 32. Vortices for Cambered Delta Plate with 800 Leading Edge Sweep
(Ref. 49)
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Figure 33. Spanwise Distributions of Harmonic Components for Quasi-steady
Variation (Ref. 42)
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Figure 34. Polar Diagrams of Amplitude - Phase Angle for Various Spanwise
Positions (Ref. 42) (Sheet I of 2)
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Figure 34. Polar Diagrams of Amplitude - Phase Angle for Various Spanwise
Positions (Ref. 42) (Sheet 1 of 2)
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Figure 34. Polar Diagrams of Amplitude - Phase Angle for Various Spanwise
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Figure 35. Deformation Shapes for Vortex Build-Up in Steady and Unsteady Case
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Figure 36. Pitch Stability Derivatives for Sharp-Edged Delta Wings at M = 0
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Figure 37. Free Body Vortex Effects on a 12.50 Sharp Cone (Ref. 53)

2-91

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D352320

THEORY, EQ (67) 0.2

... .. 0 C
-- c - 0.25 o

f- 0.25 5. 10 15 aC 20
- 0.50 0 , ,

EXPERIMENT

X STATIC TEST (REF. 38)
1.2 O DYN TEST, 0 - 1, -0.2 -  0 CG - 0.75

C Cm -, 0.2 (REF. 36)

1.0 - CG 0.75 0.4 -1.0 0.8

0.8 / 0.6 O

/ O
0.6 0.8-

/ 5 10
0.4 0

0.2 .- -0.2 -

5 10 15 CIO 200 15 o 20 -0.4 4 CG 0. 5 0

CG =  0.50 -

-0.2 -0.6
Cm 0 ------

10

1. .

a. A - 0.654 1.2

Figure 38. Pitch Oscillation Derivatives for Sharp-Edged Delta Wings
(Sheet 1 of 2)
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Figure 39. Dynamic Stability Derivatives for Sharp-Edged Delta Wings
(Sheet 1 of 2)
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Figure 39. Dynamic Stability Derivatives for Sharp-Edged Delta Wings
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Figure 40. Frequency Effects on Dynamic Derivatives for 10 Pitch
Oscillations (Ref. 57) (Sheet 1 of 2)
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Figure 40. Frequency Effects on Dynamic Derivatives for 10 Pitch
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Figure 41. Frequency Effects on an A = 0.654 Delta Wing (Ref. 36)
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Figure 48. Spanwise Vortex Position at the Trailing Edge of Slender
Sharp-Edged Wings (Ref. 72)

2-106

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D352320

TIME t TIME (t-At)

a. SIDESLIPPING DELTA WING

U.

b. EQUIVALENT QUASI-STEADY WING

Figure 49. Quasi-Steady Equivalence for a Side-Slipping Delta Wing
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Figure 52. Roll Damping of Slender Wings (Ref. 76)
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Section 3

CONCLUSIONS

A study of the steady and unsteady aerodynamics of sharp-edged slender wings

has shown the following:

" Through a simple modification, Jones' slender wing theory can give the po-

tential flow static loads for M = O.

* A redistribution of Polhamus' vortex lift, based on experimental data, pro-

vides improved prediction of the aerodynamic center.

* The present analytic approximation provides consistently good predictions

of static aerodynamic characteristics also for swept trailing edges (forward

or back).

* Based upon the present analytic approximation, universal scaling concepts

have been developed that collapse experimental lift and rolling moment

data to the accuracy needed for preliminary design. When better accuracy

is needed, the analytic approximation will give it very inexpensively on a

digital computer.

* The present analytic approximation gives good prediction of experimental

data at M = O and M = 1. Simple means could be developed to handle the

compressibility effects in the interim speed range, O<M<1.

* The slender wing unsteady aerodynamics at small angles of attack, i.e.,

the attached flow characteristics, are obtained using first-order momentum

theory at M = 1. At M = O, an equivalent wing is defined based on static

characteristics, and first order momentum theory is applied to it. The

predictions agree well with experimental data for aspect ratios up to A = 2.

* The effects of leading edge vortices on slender wing unsteady aerodynamics

are obtained using Lambourne's simple convective timelag concept in com-

bination with postulated vortex entrainment effects on the effective apparent

mass. The agreement with available experimental data is good.
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Section 4

RECOMMENDATIONS FOR FUTURE STUDY

The results obtained in the present study are very encouraging. However, they

are based on empiricism. Static experimental data for an A = 1. 147 delta wing was

used to define the vortex lift distribution. The good agreement with experimental data

for a wide A-range would indicate that the distribution as well as the total vortex lift is

independent of aspect ratio. Before the empiricism can be removed, one has to under-

stand in more quantitative detail why the vortex lift does not grow downstream of

= 0.4. Use of (a/OLE )-correlation results for delta and nondelta planforms could

provide the information needed to define how (and where) the tight vortex-leading edge

connection is lost. To extend the present analysis to cover the intermediate Mach

numbers between M = 0 and M = 1 should be a relatively simple matter.

The qualitative results obtained in the present study in regard to vortex-induced

effects on lateral unsteady aerodynamics indicate that quantitive prediction methods

can be developed. Whether or not the dependence upon static experimental data can be

removed depends strongly on the success of predicting the observed (a /OLE )-trends,

the task described in the previous paragraph. One has reasons to believe that analytic

prediction techniques can be developed that will handle the complicated pitch-yaw-roll

coupling effects from leading edge vortices.

In the present analysis the unsteady aerodynamics of a delta wing describing

bending oscillations in the chordwise plane were defined. One needs to develop the

analytic tools for predictions of the unsteady aerodynamics for more general deform-

ation shapes and to compare analytic predictions with available experimental data.

Furthermore, motion-independent buffet forces and effects of atmospheric gusts have

also to be considered before a complete analysis of the aeroelastic characteristics of

slender wings is possible. The results obtained in the present study indicate that a

complete analytic theory for the elastic slender wing can be developed without losing

much of the simplicity inherent in the presented rigid-wing analysis.
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Appendix A

NOMENCLATURE

A aspect ratio, A = b2/S

A(x) apparent cross-sectional area

ATE inefficient wing area at M = 0 (Fig. 2)

b wing span

5 reference length (usually mean aerodynamic chrod for a delta wing)

c slender wing root chord

D elastic vehicle damping, Eq. (44) and Eq. (63)

d ridig body damping, Eq. (45) and Eq. (64)

G(t) forcing function due to atmospheric gusts, Eq. (44)

I elastic vehicle aerodynamic inertia, Eq. (44) and Eq. (63)

i rigid body aerodynamic inertia, Eq. (45) and Eq. (64)

J momentum

K elastic vehicle aerodynamic spring, Eq. (44) and Eq. (63)

k rigid body aerodynamic spring, Eq. (45) and Eq. (64)

Kp, KV  potential flow and vortex lift factors, Eq. (1)

K1 , K2  constants, Eq. (52)

k 1  constant for a -dependence of vortex strength, Eq. (53)

L lift: coefficient CL = L/(P .U2 /2)S

£ rolling moment: coefficient Cy = £/(p U2 /2) Sb

M Mach number

M pitching moment: coefficient Cm = M /(P, U2 /2)S6
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ni generalized mass, Eq. (39)

N normal force: coefficient CN = N/ (poo Uc2/2)S

n yawing moment: coefficient C = n/(pooUoo2/2)Sb

P(t) generalized force

p roll rate

p static pressure: coefficient Cp (p - p)/( poUco 2/2)

q pitch rate

q(t) amplitude of normalized bending deflection, 8(x,t) = (x)q(t)

Re Reynolds number based on co and freestream conditions

S reference area ( = projected wing area)

s local semi-span

t time

At timelag

U horizontal velocity (U = DX/at)

U convection velocity

W vertical velocity (W = aZ/at)

X horizontal inertial space coordinate (Fig. 18)

x axial body-fixed coordinate (Fig. 2 and Fig. 18)

y spanwise body-fixed coordinate (Fig. 2)

Z vertical inertial space coordinate (Fig. 18)

z vertical body-fixed coordinate octogonal to the x-y plane (Fig. 29)

dimensionless z-coordinate, = z/c o

a angle of attack

a trim angle of attack
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.8 sideslip angle

6 (x, t) elastic vehicle deflection, 6 (x, t) = q(x) q(t) (See Fig. 18)

E vortex contribution to apparent mass, Eq. (67)

F vortex strength

structural damping, fraction of critical damping, Eq. (39)

17 dimensionless y-coordinate, 7r = y/s

0 angular perturbation (Fig. 18)

0 cone half angle

0 LE apex half angle (Fig. 2)

0 TE trailing edge sweep angle (Fig. 2)

A leading edge sweep angle, A = 7r/2 - 0LE

dimensionless x-coordinate, 5 = (xA - x)/c o

P air density

phase angle

A 4 phase lag

W (x) x-distribution of normalized bending deflection, 6 (x, t) = 4 (x) q(t)

w free-free bending frequency and rigid body pitching frequency

6 reduced frequency, ) = wo/U

Subscripts

A apex

a attached flow

AC aerodynamic center

b buffet

CG center of gravity

d discontinuity
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Subscripts, (Continued)

eff effective

LE leading edge

max maximum

N or I normal to leading edge

n harmonic component

g gust

s separated flow

TE trailing edge

V vortex

VB vortex burst

1,2, 3... numbering subscript

Sfreestream conditions

Superscripts

(*) trailing edge coordinate, Eqs. (8) and (9)

(') prime denoting x-derivative, e.g., ' = 0/3x

(-) barred quantities denote integrated mean values, e. g., centroid of

aerodynamic loads
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Differential Symbols

=el0/at; j = a20/at
2

CLa = 8CL/aO ; Cip = aC/las ; Cm = a Cm/0

C C +C = c/8(
S  mq m& m/ mq = acm/l(q/VU):

C = acm/( U'/ )

Cp = ac /8(bp/2 U,) : C = 8C /a (b1 /2 U.)
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